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Abstract

For many regression problems in machine learning, one
ultimately only cares about accurate prediction in some re-
stricted range. For instance, one may have a scoring func-
tion and the ultimate objective is to find the data points
which have the highest predicted score. This can be viewed
similarly to a class imbalance in which the balance of la-
bels in the training set does not match the test set. Ex-
isting methods have corrected by class imbalance by re-
weighting training data points according to the validation
loss [4]. Inspired by this, we apply a meta-learning ap-
proach to reweight training data according to validation
accuracy. We formulate a transfer learning approach that
utilizes unweighted data for training the feature extractor,
and weighted data for training the final regression layer.
Since our final linear layer is applied for regression rather
than classification, we are able to utilize the closed-form
solution to weighted least squares, resolving some mathe-
matical issues.

We demonstrate our method on the task of predicting
ages from facial images. Our test set goal is predicting ages
within the specific range 14 to 21, which may be useful for
law enforcement purposes. Our method dramatically out-
performs training on all of the data and is competitive with
training on a validation set already restricted to the rele-
vant ages. We further demonstrate the ability of the model
to learn effectively from a very restricted but discrimina-
tive set learned by reweighting. This demonstrates that the
approach may be extremely useful in cases where one does
not know how to restrict the training data a priori but does
have a validation data set representative of the testing data,
as well as generally powerful even in cases where we do
have the ability to restrict.

1. Introduction
There are many situations in machine learning regression

in which the final goal is to produce accurate predictions in
some range of Y values. One example of this is in finance
in which one may train on investments with a wide range of

outcomes with the goal of predicting which investments will
have highly positive outcomes. In this case, one does not
care about accurately differentiating poor investments from
very poor investments. Instead, one is only concerned with
accurately predicting the highly profitable portion of the Y-
value range. Another example is drug discovery. In drug
discovery, one may train on a large set of chemicals with
widely varying binding affinities to some protein. However,
the final goal is to predict which chemicals have a very high
binding affinity. Again, one is not concerned about accu-
rately differentiating low and very low binding affinities.

In this paper, we work with the task of age prediction
from facial images. The training data consists of facial im-
ages ranging from age 1 to 100+ from the UTKFace data
set [6]. However, the test objective is to accurately predict
facial images for ages 14 to 21. Age prediction in this age
may be very useful for law enforcement purposes (monitor-
ing illegal behavior and abuse). In order to achieve Our
method utilizes a smaller validation of images with ages
from 14 to 21 to learn weightings of the training data which
allow for effective regression on the restricted test set.

Figure 1. UTKFace Data Set

2. Related Work
Data reweighting and selection has been successfully uti-

lized in various domains in the past based on the intuition
that it can help avoid training set bias. Prior works have
explored reweighting data to work around noise in data la-
bels [5] as well as on class imbalance between the train and
test sets [4]. However, most prior works in data reweight-
ing, as well as within meta-learning, tend to focus on clas-
sification tasks. Our paper differs from these prior works as
we focus on regression as our primary task, though within a
setting that can be viewed as analogous to class imbalance.



Our work is also related to the Teacher-Student model
paradigm [1] and curriculum learning paradigm. In these
frameworks, prior works have explored utilizing a sec-
ondary teacher/mentor network to augment the training pro-
cedure as a form of guidance beyond just the loss function.
For instance, MentorNet( [3]) explores designing a curricu-
lum iteratively with a secondary model that takes in infor-
mation about the student’s performance on tasks to improve
its curriculum. Although our work also explores the impact
of reweighting data given information about the model’s
current performance, our work differs from curriculum de-
sign fairly heavily in that we provide a single static weight-
ing as opposed to a fluid curriculum.

Finally, our work also broadly related to the field of
meta-learning. Standard meta-learning tasks such as in
MAML [2] aim to find features that are easily adaptable
to novel tasks without significant computation for the up-
date. Our work approaches a similar problem but from the
opposite direction - as opposed to selecting for highly dis-
criminative features, we aim to select highly discriminative
training examples that would allow for strong test perfor-
mance given a fixed feature set.

3. Method
Our method starts with a training data set Dtrain, a test-

ing data set Dtest and a validation data set Dvalid which is
representative of the testing data. The training data points
are assigned weights W which are set in order to mimic the
validation loss. The immediately straightforward for setting
the weights W is using the validation loss gradients as well
as the gradient of the training loss for each data point to
determine which training points are beneficial in each iter-
ation. This was experimented with, giving generally worse
unstable results - the details of this are described in further
detail in Appendix A. We will now describe the more suc-
cessful approach, taking a more indirect path towards opti-
mization.

3.1. Primary Approach

The regression model for predicting ages from facial im-
ages consists of a feature extractor function fψ and a lin-
ear regression layer gϕ. Initially, the feature extractor and
regression layer are trained together on all of the training
and validation data (but not the test set data) using gradient
descent. We will use fϕ to refer to this trained feature ex-
tractor and gϕ0

to refer to this trained regression layer. This
feature extractor then allows us to convert high dimensional
images into vector representations which can be used for
age prediction.

After finding this feature extractor, the regression layer
can be optimized with various different weightings. Let N
be the number of training data points and M be the dimen-
sion of the dimension of the feature vectors produced by

fψ . Let Ri be the ith data point facial image. Define X as
the matrix with N by M + 1 matrix with Xij = fψ(Ri)[j]
for j ≤ M , and XiM = 1 for all i. The last column of
X consisting of all ones simply allows for a Y-intercept.
This matrix X is the “design matrix”, a matrix of input data
points for the linear regression problem. Let W be an N by
N diagonal matrix with Wii set as the weighting assigned
to data point i. Let λ be the ridge regression regularization
factor. The solution to weighted ridge regression is then the
below equation.

ϕ∗(W ) = (XTWX + λI)−1XT y

For baselines in the paper, we set W as either all ones, or
ones for data points with ages between 14 and 21 and zeros
otherwise.

For our meta-learning approach, we split off part of the
training data containing faces within the desired age range
to act as validation data and utilize this to determine W .
Define Lvalid(ϕ) to be the L2 loss on the validation data as
a function of the regression model parameters ϕ. We then
wish to set W to minimize Lvalid(ϕ

∗(W )). However, di-
rectly optimizing W simply results in heavy over-fitting to
the validation set. Instead, we define a function hθ which
outputs weightings for each data point. In theory hθ can
take any information about the training data points as an
input. However, in practice we find it works best by utiliz-
ing Yi and the initial age prediction found on all the data
gϕ0

(fψ(Ri)).
Define Wθ as the vector of weight outputs produced by

hθ on all of the training data. This allows us to calculate
the validation loss as a function of θ as Lvalid(ϕ

∗(Wθ)).
We optimize the parameters θ of our weighting function hθ
using gradient descent in order to minimize this loss. De-
fine θ∗ as this optimized θ. Our final predictions are given
by gϕ∗(Wθ∗ )(fψ(Ri)) (for training, validation and testing
data).

4. Experiments
4.1. Dataset Setup

The full UTKFace data set [6] consists of 9780 images,
some of which are visualized in Figure 1. Each image is
200 pixels by 200 pixels and had three color channels with
values ranging from 0 to 255. The images were downsam-
pled by a factor of 5 to 40 by 40 images to make the ma-
chine learning require less computational resources. This
was done by averaging the pixel value across 5 by 5 groups
of pixels. Additionally, the color channels were normalized
to range from 0 to 1. In all experiments, the testing data
was formed by first selecting 1000 random images and then
restricting to images with ages between 14 and 21. In ex-
periments with a validation data an additional 1000 images
were removed from the training data and then restricted to



ages between 14 and 21. The training set consists of all im-
ages not in the testing or validation data set, possibly age
restricted depending on the experiment. In the cases where
the training data is not age restricted (our meta-learning ap-
proach and the All baseline), the entirety of the training data
is utilized, while the Restricted baseline is trained on only
the subset of the training data that falls within the ages 14
to 21.

4.2. Model Architecture

As mentioned in section 3, we subdivide our problem
into a few steps. The actual classifier requires first training a
feature classifier with standard optimization techniques and
then solving for the closed form solution for the linear clas-
sifier using Ridge Regression. We choose a 2-layer convo-
lutional neural network with kernel size 7 and feature maps
of depth 32 and 16 respectively to serve as our feature ex-
tractor, and train it with a linear head on the entire training
dataset to learn feature representations.

In order to gain a more robust evaluation of our method,
we employ cross-validation with 8 test/train splits, and as
such train a separate feature extractor for each of the splits
as to avoid data leakage between the test and train data.
Both our baselines simply train a linear layer on top of the
feature extractor using Ridge Regression with ridge param-
eter 5e-3 - note that as such there is no additional learning
that needs to be done for either of these methods as Ridge
Regression has a closed form solution.

For the weight predictor component of our approach, we
utilize a small linear network that takes in the predicted
age from the feature extractor (with the linear head it was
trained with) and the true age as inputs. We find that the
specific architecture of this network does not change results
too much given that the parameter count isn’t excessively
high, and settle on a network with one hidden layer with di-
mension 20. For the final outputs, we do notice reasonable
variation in performance depending on the non-linearity uti-
lized. We observe the best performance when the final non-
linearity in the weight predictor network is f(x) = 1

x2+1 .
Alternate bounding functions based around tanh and sig-
moid seemed to result in inferior results and greater insta-
bility. We train each model for 1000 epochs with gradient
descent, using ADAM as our optimizer with a learning rate
of 1e-4.

4.3. Age Prediction Accuracy

We observe strong results from our method with com-
parison to both baselines, as shown below in Figure 2 and
Table 1. We leave out the results for the all baseline in our
visualization as they are orders of magnitude off from the
other two, and thus make it quite difficult to view the differ-
ences between our method and the restricted baseline when
included.

Figure 2. Comparison of MSE for Reweighted and Restricted

Method MSE
All 7.955 ± 1.344

Restricted 0.249 ± 0.067
Reweighted (Ours) 0.206 ± 0.016

Table 1. Method Results

Our method is not only able to massively outperform the
naive all baseline by orders of magnitude, it is effectively
always competitive with the restricted baseline and tends to
outperform by at least 10 - 15% on nearly all of the train/test
splits that we evaluated. This makes it particularly useful in
scenarios where creating an extensive restricted dataset may
be difficult but acquiring a small clean validation set is not
difficult. It’s performance improvements are also promising
in that it is able to reasonably consistently beat out the re-
stricted baseline in 7 out of our 8 splits, suggesting that the
re-weighting method holds significant merit for even tasks
where a restricted dataset may exist.

4.4. Learned Weighting Results

Beyond just demonstrating the efficacy of our approach,
we also seek to provide an understanding of how the learned
weightings improve performance, and observe fairly sur-
prising results. As opposed to what one might intuitively
expect, the model learns to select a fairly sparse subset of
the training data, with significant portions not even within
the desired target range, yet still manages to avoid overfit-
ting to the validation set.

We provide heat map visualizations of the weightings
learned over various train/test splits in Figure 3. Note that
each appears to select for a curve with fairly thin bound-
ary of a couple years at most. In most of the outputs that
we tested with, the curves would be semantically similar,
generally following an inverse relationship between the pre-
dicted and true ages. Despite these semantic similarities, the
produced curves for each model were still quite different
with regard to exact shape and endpoints, suggesting that
the learned reweightings were truly optimized for the fea-



Figure 3. Learned Weighting Heat Maps for 3 Train/Test Splits

tures learned by the feature extractor as opposed to solely
picking high quality datapoints that would help any model.

This result was quite interesting to us as we would have
expected that the optimal weighting would include most of
the relevant data with small portions of the misclassified
non-relevant data. However, the model appears to find op-
timal weightings for the linear layer with just a small num-
ber of highly discriminative samples along some form of
learned boundary. To give some sense of scale, we typically
observe that only around 200 to 400 out of the initial 8000
train datapoints are given a weight of greater than 0.1, which
is less than half of the size of the restricted train dataset size.

With this intuition in mind, we can attempt to reorient
our understanding of what the learned weightings accom-
plish. Rather than simply utilizing most of the relevant data
and reweighting small portions of the remaining data as one
might expect, our model is able to learn a highly discrimi-
native boundary that surgically corrects the inadequacies of
the original feature extractor while still avoiding overfitting
even with an extremely small number of samples used to
train the linear classifier head.

5. Conclusion

In regression, one is often concerned with accurate pre-
diction only within some range of Y values. We intro-
duced a generalized technique to learn data re-weightings
for regression tasks with such domain mismatches between
train and test data. This technique utilizes a feature ex-
tractor trained on all the training data and uses validation
data to determine training data re-weightings that allow the
regression layer to perform well on the testing data. Our
reweighting model utilizes information about the feature ex-
tractor’s deficiencies on a validation set to assign weights to
the training data that correct these deficiencies when used
to train the linear regression layer head. We demonstrate
the technique’s strong capabilities in identifying discrimi-
native boundaries to extract the most utility from the pro-

vided feature extractor in a single linear layer, both vastly
outperforming training on all data by orders of magnitude
and reasonably outperforming training on solely restricted
data. Our experiments also provide insight into how train-
ing on even a low number of datapoints alongside a learned
discriminative boundary can help alleviate data imbalance
between the test/train sets. One possible direction for future
work could be exploring more complex functions for as-
signing weights to data points, rather than using simple two-
layer neural networks. Another direction for future work
could by applying our method to situations in which the test
domain shift is more complex than restricting to an a-priori
known set of Y values.
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6. Appendix A: An Alternative Approach

In this appendix, an approach we previously used is de-
scribed. We explore some of the substantial mathematical
issues and practical difficulties that we encountered while
attempting it.

This approach is very general and does not require a sep-
arate treatment of the feature extractor and regression layer.
Define fθ now as the full neural network which inputs fa-
cial images and outputs age predictions. Define Li(θ) as
the L2 loss on training data point i as a function of the net-
work parameters θ. Define Lvalid(θ) as the average L2 loss
on the entire validation data set as a function of the network
parameters θ. Define Wi as the below dot product.

Wi =
dLi(θ)

dθ
· dLvalid(θ)

dθ

Conceptually, Wi is positive if minimizing the loss of
the training data point i “pushes” the network parameters
in a direction that reduces the validation loss. Similarly,
Wi is negative if minimizing the loss of the training data
point i “pushes” the network parameters in a direction that
increases the validation loss. Thus, in a sense, Wi is positive
for beneficial data points and negative for detrimental data
points. In fact, Wi is the derivative of the validation loss
in the next iteration with respect to the weight assigned to
data point i evaluated at the current weight being zero. The
actual weighting used in each iteration is ReLU(Wi) where
ReLU(x) = x if x > 0 and ReLU(x) = 0 if x ≤ 0.
This ReLU modification is used in order to remove negative
weights which may result in over-fitting to the validation
data.

6.1. Failures Observed in Proposed Method

We initially sought to explore our method on a very sim-
ple case to verify its validity for debugging purposes in the
future. However, we found that it generally failed on the
trivial case of a piecewise affine function with two pieces.
Specifically, we set X to be 100 data points ranging from
−0.5 to 0.5. We set Y to be 0 at X = −0.5. We set the
slope of Y to be 1 and the slope of Y to be 4 when X > 0.4
as shown in 4.

The variable Y has no discontinuities as a function of X .
We defined the validation loss and the test loss to both be the
mean squared error on 10 data points with X ranging from
0.4 to 0.5. The optimal solution is for the model to only put
weight on data points with X > 0.4. This was meant to
be a simple test for debugging our approach. However, af-
ter it failed, very careful investigation instead allowed us to
determine a fundamental mathematical flaw with using data
point gradients. Interestingly, this mathematical flaw seems
to only be an issue in practice when using simple mod-
els such as linear models. Therefore, we were still able to

achieve good results on an image regression task described
in the third section.

The mathematical flaw expressed itself in the form of y-
intercept gradients massively interfering with slope gradi-
ents, resulting in misleading signals. As a “hack” solution
to this, we modified our task definition to predict the differ-
ence in Y values between data points rather than predicting
individual Y values. This change in the definition made the
y-intercept irrelevant (it cancels out when calculating dif-
ferences in Y values) and allowed us to somewhat progress.
This solution allowed the model to achieve perfect results
(finding a slope of 4) on our previously described 1 dimen-
sional regression task.

Figure 4. Piecewise Affine Test Case

Additionally the modification, allowed us to move on
to two dimensional cases. Specifically, we let X1 and X2

range from 0 to 1. Then we defined Y = 2(X1)(X2 − 0.5).
The test set goal is to identify the top 10% highest Y value
data points. Our model is a simple linear model. Not using
meta-learning results in a slope of 0 in X1 (since the positive
slope for high X2 exactly cancels the negative slope for low
X2). However, applying meta-learning allows the model to
ignore data points with low X2 and high X1, resulting in
a positive slope for both variables and correctly identifying
the highest Y values as coming from high values of X1 and
X2. However, the method already started running into sub-
stantial issues on similar types of problems using a linear
model but with 60 dimensional inputs. In general, it seems
our optimization procedure is difficult and “likes” to run
into local optima, cycles, and other major issues. However,
as described in the third section, using a high dimensional
convolutional neural network avoids these issues.

6.2. Mathematical Explanation

The hope our are approach is that a data point having
a loss gradient in the same direction as the validation loss
gradient is the same as it being beneficial to put some
weight on that data point. A more precise formulation of
this is as follows. If the data point x has a loss gradient
in the wrong direction (with respect to the validation loss
gradient) then adding an infinitesimal amount of that data
point to our training data should be detrimental. In formal
mathematical language we have the following.



Hypothesis 1. Let θ∗ be the optimal parameters on
the training data set D with data points given weights
W . Let d be some new data point we are considering
adding. Let gd be the gradient of the training loss function
on that data point with respect to the parameters. Let
gv be the validation loss gradient. Let θδ be the optimal
parameters on the training data set D ∪ {d} with data
points given weights W ∪ {δ}. In other words, θδ is the
optimal solution when the data point d is added with weight
δ. Let L(θ) be the mean squared error validation loss of
any model parameters θ. Let the dot product of gd and gv
be negative, so adding d appears to be detrimental. Then,
limδ→0(L(θ∗)− L(θδ))/δ ≥ 0.

There is also the reverse hypothesis about data points
with “good” gradients being beneficial to add to the training
data with an infinitesimal weight δ. The reason for letting δ
approach 0 is that we are only using gradient information,
and therefore could only hope to have guarantees on
infinitesimal effects to our network parameters.

Theorem 1. Hypothesis 1 is false.

Proof. For the sake of saving time since this is not a
theory/proof course, we will just sketch the proof. Imag-
ine the data point d moves the slope in the direction that
decreases the validation loss and d moves the y-intercept
in a direction that increases the validation loss. Then, by
shifting the X-scale (multiplying all X values by some con-
stant) one can shift the scale of slope gradients. Therefore,
one can change whether or not the dot product of gd and
gv is positive or negative. With sufficiently large X val-
ues, one can force the dot product to be negative even if
limδ→0(L(θ∗) − L(θδ)) > 0. Even if one normalizes X ,
one either the training or validation set, one can still have
the same problem due to the other one not being normal-
ized. This can’t be fixed because one can’t simultaneously
normalize both.

Additionally, there are failure cases which have nothing
to do with normalization. Specifically, there exists cases
where the slope/intercept gradient gd is positive despite the
slope/intercept in θδ being larger than the slope/intercept in
θ∗ even as δ → 0. This happens as a consequence of the
optimal slope/intercept being dependent upon the current
intercept/slope and so the gradient is not all-ways in the
same direction as the direction of the optimal solution even
for infinitesimal δ.

This demonstrates a potential flaw with using our
method. However, in practice, only seems to be catastrophic
when using simple models. Intuitively, only using data
points that help the validation loss is a form of restricting
the gradient directions. When using a simpler model, these

Figure 5. Correlation Curves for Direct Reweighting Approach

restrictions can completely prevent effective optimization.
However, when using high-parameter models, there are al-
ternative beneficial directions in which model parameters
can move.

We observe in practice that the model is able to learn
reasonably in this method. A training plot over 50 epochs is
provided in Figure 5 where the initial CNN is fine tuned
on either our re-weighting of the data, a fully restricted
dataset, or the entire dataset, and we can observe the seem-
ingly improved performance of our method over both base-
lines. However, stability is highly lacking, as demonstrated
by the sharp dips and jumps in the correlation curve, sug-
gesting that alternative methods with higher stability could
show more promise as we explore in the main section of the
paper.

In contrast, we provide a visualization of one sample’s
test correlation curve in Figure 6 with the method we ex-
plore in the main body of the paper, consisting of a much
smoother curve and higher correlation over 200 epochs. We
do note however that correlation ended up being a relatively
more unstable measure, so we eventually pivoted to using
a standard mean squared error loss as reported in the main
body of our paper. Correlation was initially proposed as
the evaluation metric due to concerns that having an unre-
stricted training dataset for our and the all baseline methods
would unfairly penalize them for learning on out of domain
predictions while the restricted dataset would avoid that, but
we found in practice that our method continues to outper-
form the restricted baseline even with this disadvantage.

Figure 6. Correlation Curve for Indirect Reweighting Approach
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