Neural Music Transcription with Spatiotemporal Vision Models

Ansh Sharma, anshgs2@illinois.edu
Albert Xiao, anxiao2@illinois.edu
CS 543 - Fall 2022

Abstract

Music Transcription is a task that has often been left to
experts in music theory in the past - requiring transcription
of polyphonic audio into playable notes. However, with re-
cent advances in deep learning, image and audio processing
techniques alongside deep computer vision techniques have
shown remarkable promise in automating this task.

In this project, we explore two computer vision-inspired
models, Fully Convolutional Neural Networks and Recur-
rent Convolutional Neural Networks, and evaluate them on
the MAESTRO dataset. We further explore different tech-
niques to guide the model’s training through designing a
loss function with custom weightings for a cross-entropy-
derived loss function. We also compare the performances
of the two models with all factors held constant except the
final head to directly compare results. Beyond this, we also
consider the use of several transformer-based models, but
report insufficient performance with a naive implementa-
tion as well as a few variations due to reasons explored in
the appendix.

Full code is available here: https://github.com/
AlbyYuggle/CS543Project/

1. Introduction

Music Transcription is a fairly difficult task without
extensive training due to the difficulty in distinguishing
rhythms and pitches between multiple overlapping notes in
songs. As such, gaining access to transcribed sheet music
for songs can often be prohibitively expensive or difficult
for beginners who are unsure of whether they will even be
able to play a given song. The field of Automatic Music
Transcription provides a new option, aiming to convert au-
dio files into a readable format by musicians. Prior research
has explored both monophonic transcription, in which the
audio file contains a single instrument that plays one note
at a time, as well as polyphonic transcription[2] which can
contain multiple notes at each time step, played by one or
multiple instruments.

In our project, we want to focus on piano transcription in

particular, making the problem at hand polyphonic in na-
ture, but with only a single instrument, placing it some-
where toward the middle of the spectrum in terms of task
difficulty. With this restriction, we only have two main sub-
tasks to work towards: identifying note frequency and dura-
tion. From a very broad viewpoint, our approach will center
around a spectrogram rather than raw audio data, allowing
us to use computer vision-based techniques to extract notes
from the spectrogram in image space. Prior works focusing
on audio primarily utilize CRNNs, Convolutional Recurrent
Neural Networks, applied to melspectrograms in order to
capture the spatial and temporal natures of the problem(2,
3, 5]. For our contribution, we aim to explore and compare
alternatives to this: in particular, the main alternatives we’re
considering at the moment include fully connected CNNs as
a baseline as well as Transformer based architectures.

2. Methodology

2.1. Data Collection and Processing

Our dataset for this project was the MAESTRO dataset
[4], which includes 120 GB of pairs of audio wav files and
midi files for piano music. The original dataset contains
1276 wav files (around 200 hours of total recording) and
corresponding MIDI files which contain information about
note onset, offset, velocity, and pedal information. For
the scope of this project, we only focus on the note on-
set and offset portions to decrease the complexity of the
problem. In order to make this data usable for training, we
need to standardize the formats of all of the audio record-
ings, by taking 10-second intervals from the audio files and
converting them to log Mel Spectrograms (Figure 1), with
the following parameters: n_fft=2048, win_length=2048,
hop_length=160, n_mels=229, f_ min=30, f_max=8000. This
creates around 71,000 total input-output pairs.

In order to create a predictable output format, we convert
the midi files to a binary NumPy image, with 1 representing
the note being played/held, and O representing a note not
being pressed (Figure 2). Since different midi files have
different ticks per second or tempo, we standardize these
values by bilinearly interpolating.

https://github.com/AlbyYuggle/CS543Project/
https://github.com/AlbyYuggle/CS543Project/

100

150

0 200 400 600 800 1000

Figure 1. Input Spectrogram Visualization

[1000 2000 3000 4000 5000 6000 7000

Figure 2. Output MIDI Visualization

Now that we have processed and standardized data, we
can try different deep learning architectures to attempt to
predict the MIDI representation from the log Mel Spectro-
grams. The three architectures we chose to investigate were
Fully Convolutional Neural Networks, Recurrent Convolu-
tional Neural Networks, and Sequence-to-sequence trans-
former models. Finally, after predicting the results, we con-
vert the predicted NumPy array back into a midi file, which
can be played or converted to sheet music by music produc-
tion tools.

2.2. Fully Convolutional Neural Networks

Our inspiration for a Fully Convolutional Neural Net-
work was taken from the U-NET[10], and the idea that our
input and output are both images, so we can downsample
the input spectrogram to learn the features, and upsample
it back to decode the features into the desired output. Fur-
thermore, we added skip connections to help identify more
global features and help with gradient flow. We also took
inspiration from ResNet[11], as we used residual connec-
tions, making it easier to learn weights for convolutions.
Combining these key ideas from these notable papers, we
arrive are our model, which is shown in figure 3. Another
important factor is the Sigmoid last layer, which limits the
output from O to 1, which is exactly what we are trying to

predict.

2.3. Recurrent Convolutional Neural Networks

For the CRNN model, we drew inspiration from the
Bytedance Piano Transcription Model [3], which uses a
CRNN with many GRUs to solve a more complex prob-
lem that incorporates pedal, velocity, on/offset and frame
as different learned components put together for the final
transcription. Since we simplified the problem by neglect-
ing components such as pedal and on/offset prediction, we
would require a less complex model making it more feasi-
ble to train locally. As such, we took inspiration and used
a GRU in place of our Conv1D layer in our FCNN model,
and kept everything else the same. The motivation for this
additional recurrent layer is that music is inherently time
oriented, so we thought that the GRU would be able to cap-
ture some of these properties. The overall architecture is
shown in figure 3.

2.4. Transformers

2.4.1 Seq2Seq Transformer Model

As mentioned previously, music is inherently time and or-
der oriented, meaning the encoding of sequential/temporal
relationships is expected to be key in producing accurate
predictions. Because, of this, we thought that a sequence-
to-sequence transformer model may be a good attempt at
predicting an output. We began with a standard seq2seq
model detailed in [9]. We added a linear layer and Sigmoid
layer at the end of the model to reshape and bound the out-
put to give us a binary prediction for each key at each time
step. Overall, we found that the results for the transformer
were extremely inadequate. The model tended to predict a
constant image over all columns, as the model learned sim-
ply to predict the same response as the previous time step,
as many notes are held for a beat or more. More details
about this model’s failure can be explored in Appendix A.

2.4.2 Transformer Encoder

Seeing the failures that occurred in the Seq2Seq model, we
decided to try an encoder-only model, shown in figure 4.
The main components of this model include the positional
encoding, which helps the model learn the ordering prop-
erties of the input, the multiheaded attention layer, which
helps the model find context between different features in
the inputs, and the Conv1ld+Sigmoid at the end which is
specific to our problem. This is because the output of the
base transformer has the same size as the input, and the
Convld seeks to shift that to our output space, while the
Sigmoid bounds the output. Overall, the model still pre-
dicted constant row outputs, which can be further explored
in Appendix A.

FCNN/CRNN Model

Log Mel Convid (FCNN) . . Oquut MIDI
Spectrogram Reshape / GRU (CRNN) Sigmoid image
229 x 1001 88 x 7680
Downsample Upsample
Residual Residual Conv2d
Conv2d Block Block
Downsample Upsample
Residual Conv2d + tanh Conv2d + tanh Residual Conv2d
Conv2d Block Block
Up/Downsample Residual Conv2d Block
Input Conv2d +tanh Conv2d + tanh BatchNorm Upsample / Tanh Ouput
Maxpool
o
Figure 3. FCNN/RCNN Architecture
Transformer Model
Log Mel positional Multi-headed S LI
— ——> Add&Norm [——» Feed Forward ——> Add&Norm (——> Upsample ——3| Convld e Sigmoid — image

Spectrogram Encoding Attention

88 x 7680

Figure 4. Transformer Encoder-Only Architecture

3. Experiments

We explore each of these models on the MAESTRO
dataset. After subdividing the dataset into separate test and
train splits, we standardize our training between CRNN’s
and FCNN’s by making the remainder of the setup as iden-
tical as we can, consisting of using ADAM as our op-
timizer with learning rate 3e-4 and weighted variants of
cross-entropy as our loss function. We evaluate models us-
ing a set of robust metrics as opposed to purely accuracy
for reasons we will detail more in section 3.2 - more specif-
ically, we provide precision, recall, and F1 scores for each
run in addition to the accuracy. To standardize compari-
son, we evaluate each model after 1 epoch and then again
after 2 epochs. We do note that most of the models would
likely see significant improvements given even longer train-
ing time, as an observation of their raw predictions as op-
posed to rounded do seem to suggest that they are still in the
process of learning - however, due to computing constraints
for this project, we decided to constrain each model to just
1 epoch to gain a fair comparison.

3.1. Loss Function Design

When designing a loss function, we initially defaulted
to a standard MSE loss in hopes that it would enforce vi-
sual similarity to the desired outputs. However, we quickly
observed that this led to training collapse where the model
would effectively learn to output a low probability for every
square and predict all 0’s when rounded, as each image has
significant class imbalance with around 98% empty space
and 2% notes, which makes sense given that a piano player
only plays a couple notes out of the 88 provided at any given
point. This led the model to easily learn that it can maxi-
mize MSE by simply prioritizing the 98% and ignoring the
actual notes, which is far from the desired behavior.

We find that a more traditional loss for classification
problems, Binary Cross Entropy, works far better for our
settings due to penalizing the model for outputting incor-
rect answers with high confidence. Given that we are also
enforcing the constraints of 1 epoch of train time, we sought
to find out ways to modify the loss function that would re-
sult in quicker training. As such, we settled on testing out
variants of BCE with weighting. More specifically, we took

1000 2000 3000 4000
la

5000 6000 7000

1000 2000 3000 4000 5000 6000 7000 0

2a

1000 2000 3000 4000 5000 6000 7000

1000 2000 3000 4000 5000 6000 7000

0 1000 2000 3000 4000 5000 6000 7000

1b 1c

0 1000 2000 3000 4000 5000 6000 7000

2b 2c

Figure 5. Visual Comparison of Results. la-1c contain outputs for the FCNN with weightings of 5 = 0.05,0.5,0.2. Similarly, 2a-2¢c
contain the corresponding outputs for the CRNN model with the same set of weights. The target image for this audio sample is contained
in Figure 2 within section 2 for reference. Observe the difference in note prediction density between the different weightings, but relative

consistency between the two models.

’Architecture\ I5) \ F1

\ Precision \ Recall \ Accuracy ‘

CRNN 0.05 | 0.1903 | 0.7435 | 0.2563 | 0.9811
CRNN 0.5 | 02252 | 0.2997 | 0.9102 | 0.9495
CRNN 0.2 | 0.2940 | 0.4863 | 0.7453 | 0.9763
FCNN 0.05 | 0.2318 | 0.6865 | 0.3522 | 0.9816
FCNN 0.5 | 02326 | 0.3129 | 0.9096 | 0.9524
FCNN 0.2 | 02970 | 04785 | 0.7622 | 0.9756

Table 1. Model Performance after 1 Epoch of Training

the assumption that a pianist had around 5% of the notes
being played at any given timestep, and chose a reweight-
ing factor of (8 to revalue the importance of positive versus
negative notes as follows (where y is the true value and ¢ is
our predicted probability):

£00:5:8) = 15 (1= y)log (1 =) + =3y 1og ()

We explore 3 possible weightings - the first being an un-
weighted comparison with 5 = 0.05 as our estimate for

the proportion of notes being played at any given time step.
Additionally, we consider 3 = 0.5 and 5 = 0.2 for both
the CRNN and the FCNN. Visualizations are provided for
a sample on each of the 6 created models in Figure 5. For
quantitative comparison, we evaluate our metrics after 1 and
2 epochs, detailed in tables 1 and 3.

We note in Table 1 that the 5 = 0.2 reweighting has
the best F1 score in both cases by a sizeable margin, sug-
gesting that there is likely an optimal weighting between a
perfect balance and the original weightings that leads to bet-

ter results after initial training. It is likely that all of these
methods may converge to similar F1 scores given sufficient
time, but given our computational and temporal limitations
for this project, we primarily observe the performance after
the first few epochs.

’ Architecture \ Parameter Count \ Runtime per Epoch

CRNN 384552 7:27
FCNN 321544 5:21

Table 2. Model Complexities

3.2. Model Complexity Comparison

At a high level, we sought to make the two models as
close as possible computation-wise in order to make the
comparison fair. As such, the backbones of the models
are identical, with the only difference being the predicting
heads. Parameter counts between the two models are quite
similar as well and are provided below alongside runtime in
Table 2.

We can note that the runtime for the CRNN is reason-
ably more than the runtime for FCNN for a single epoch -
there are multiple potential reasons as to why this may be
the case. Due to the larger memory requirements for the
CRNN, we were required to use a slightly smaller batch
size (16 instead of 32), which may have increased runtime
a bit due to reduced parallelization. Accounting for this and
the slight increase in total trainable parameter count, the in-
creased runtime seems about in line with what we’d expect.

3.3. Further Training Time

During training, we also observed that it seemed as if
both model architectures could still reasonably gain perfor-
mance within another epoch or so due to the raw predic-
tions often having the right outputs but just not with enough
confidence to round to a 1 as seen in Figure 6. As such,
we decided to continue training each model with a sec-
ond epoch as well to get a better understanding of if ei-
ther model pulls further ahead of the other. Results for the
second epoch of training for each of the same settings as
in the first epoch results are provided in Table 3 alongside
their relative improvements over the first epoch. Note that
our models would likely continue to see improvement over
multiple further iterations due to still underfitting the train-
ing data, but as stated before we are limited by computation
and time for the scope of this project.

We note that both models demonstrate modest improve-
ments on the scale of low single-digit percentage increases,
though the outputs are not drastically different from a visual
standpoint for the most part. We do see after the second
epoch that the CRNN does outperform the baseline FCNN
for the best F1 score by a comfortable margin, which is dif-

o 1000 2000 3000 4000 5000 6000 7000

Figure 6. Raw prediction outputs for Unweighted CRNN Epoch 1

ferent from after just one epoch where they had around the
same performance. This seems to suggest that the recur-
rent nature of the CRNN’s final layer is able to general-
ize slightly better, but this is only really seen after a longer
training span. It is likely that this trend may continue for
further epochs, but we are unable to explore that at the mo-
ment due to computational restrictions.

3.4. Learning Visualization

We additionally seek to understand the learning process
for the models qualitatively to get a sense of how it learns
the correct mappings. As such, we visualize early check-
points for each model weighting in Figures 7, 8 and 9 - we
specifically focus on the FCNN results as the CRNN results
appear qualitatively similar, with the weightings making the
key differences.

All three outputs are taken after 0.2 epochs of training,
but the differences between them are quite interesting to
note. We note that in the first visualization (Fig 7), which
was trained with the default binary cross-entropy loss, the
model has yet to learn anything meaningful about the exact
structure of the music. However, what is interesting to note
is that it seems to have gained a notion of beats as well as
musical key, as there seems to be a very clear grid-like pat-
tern present in the prediction even if the desired structure is
far from visible. This seems to suggest that the model first
gets an idea of when notes are likely to start/end as well as
which notes are likely to be played given the input.

On the other hand, both 8 = 0.5 and 5 = 0.2 show re-
markably more structure in their outputs after even just 0.2
epochs of training. The fully re-balanced dataset tends to
be quite a lot noisier at this stage which we’d expect, while
the intermediate balanced dataset provides fairly reasonable
results qualitatively even at this early on in the training pro-
cess, showing the impact of our reweighting

Architecture | 8| F1 Precision \ Recall
CRNN 0.05 | 0.2673 (+0.0770) | 0.7791 (+0.0356) | 0.4069 (+0.1506)
CRNN | 05 | 0.2366 (+0.0114) | 0.3176 (+0.0179) | 0.9319 (+0.0217)
CRNN 0.2 | 0.3101 (+0.0161) | 0.5100 (+0.0237) | 0.7925 (+0.0472)
FCNN 0.05 | 0.2599 (+0.0281) | 0.7532 (+0.0667) | 0.3985 (+0.0463)
FCNN 0.5 | 0.2461 (+0.0135) | 0.3371 (+0.0242) | 0.9134 (+0.0038)
FCNN 0.2 | 0.3043 (+0.0073) | 0.4998 (+0.0213) | 0.7795 (+0.0173)

Table 3. Model Performance after 2 Epochs of Training

FCNN
Partial - 8 = 0.05

Figure 7. Figure 8. FCNN

Partial - 5 = 0.5

Figure 9. FCNN
Partial - § = 0.2

3.5. Sample Audio Outputs

To further facilitate qualitative comparison between our
results, we provide audio samples for each of our mod-
els and loss weightings generated for two 10 second seg-
ments. All outputs are available as MP3 files in our GitHub
repository in the following folder https://github.
com/AlbyYuggle/CS543Project /tree/main/
outputmp3. From these two examples, we can immedi-
ately notice more audible results of our models. Although
previously we could see that the MIDI image looked like it
matched, it was more important to hear whether or not the
transcription really sounded the same as the audio. From
listening to the two examples provided, we can see that the
general melody and harmony are well preserved in the tran-
scription. However, the main difference between the dif-
ferent loss functions that we experimented with was the
amount of noise added to the transcription. In our mu-
sical opinion, it is better to omit more subtle portions of
the transcription than to add extra noise, as omission still
allows for the clear acknowledgment of the main melody,
harmony, counterpoints, and other music features, whereas
noise begins to muddle these musical ideas. As such, we
can hear that the results that we deemed best visually in-
deed did sound better, as they had significantly less noise,
which corroborates our claims.

4. Discussion

In this project, we’ve explored neural transcription
through three different spatiotemporal deep learning-based
computer vision techniques. We were able to attain rea-
sonable results qualitatively and quantitatively with two
of the three models, though we observed that our third

transformer-based architecture seemed to be a poor fit for
this task when naively applied to the dataset. Nonethe-
less, our CRNN and FCNN methods both performed com-
parably, with CRNN gaining seeming improvements both
quantitatively and qualitatively the longer we trained. This
seems to suggest that the recurrent head of the CRNN does
provide benefits to the models learning as opposed to the
local temporal convolutions which only consider the tem-
porally adjacent features when computing the final output.
However, the FCNN architecture performs at least compara-
bly within the first few epochs, only lagging slightly behind,
suggesting that it still remains a fairly viable method.

We also explored the impact of loss-function reweighting
and observed that it did make quite a significant difference
with respect to how the model learns within the first few
epochs. As opposed to a default cross-entropy or an arti-
ficially fully balanced dataset, we find that an intermediate
weighting produces the best results with regards to F1 score
and qualitatively.

Future work on this project would likely require fur-
ther training for both the CRNN and FCNN, as we have
seen that they both appear to benefit from further train-
ing and will likely continue to improve in performance
for another few dozen epochs before overfitting - however,
this would require more time and/or computational power
than we have at hand at the moment for the scope of this
project. We may also explore more nuanced modifications
for the transformer-based architectures such as customized
loss functions to avoid the model collapse that we observed
in each of our experiments detailed in the appendix.

5. Statement of individual contribution

Both team members worked collaboratively in person for
the majority of this project. In terms of the main responsi-
bilities of each team member: Albert was primarily respon-
sible for data acquisition and cleaning, designing scripts to
extract and convert the data into a conducive format for the
models, and converting the outputs back into midi files. Al-
bert was also responsible for maintaining the codebase and
repository. Ansh was primarily responsible for the model
design and implementation, creating the architectures and
training loops in PyTorch and running the experiments.

https://github.com/AlbyYuggle/CS543Project/tree/main/outputmp3
https://github.com/AlbyYuggle/CS543Project/tree/main/outputmp3
https://github.com/AlbyYuggle/CS543Project/tree/main/outputmp3

6. References

[1] Ruoyan Chen, Yiwen Liu, Automatic Music Transcrip-

tion, http://cs230.stanford.edu/projects_

fall 2020/reports/55773193.pdf

[2] Miguel A. Romdn, Antonio Pertusa, Jorge
Calvo-Zaragoza, A holistic approach to poly-
phonic music transcription with neural networks,
https://arxiv.org/pdf/1910.12086.pdf

[3] Qiugiang Kong, Bochen Li, Xuchen Song, Yuan
Wan, and Yuxuan Wang. “High-resolution Piano Transcrip-
tion with Pedals by Regressing Onsets and Offsets Times.”
arXiv preprint arXiv:2010.01815 (2020). [pdf]

[4] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts,
Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse Engel, and Douglas Eck. ”Enabling
Factorized Piano Music Modeling and Generation with
the MAESTRO Dataset.” In International Conference on
Learning Representations, 2019.

[5] Gupta, G., Kshirsagar, M., Zhong, M. et al. Comparing
recurrent convolutional neural networks for large scale bird
species classification. Sci Rep 11, 17085 (2021). https:
//doi.org/10.1038/s41598-021-96446-w

[6] Datasets: https://paperswithcode .com/
datasets?task=music-transcription

[7] Ming Liang and Xiaolin Hu, "Recurrent convolutional
neural network for object recognition,” 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 3367-3375, doi: 10.1109/CVPR.2015.7298958.

[8] Lea, Colin, et al. “Temporal convolutional net-
works for action segmentation and detection.” proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017.

[9] Vaswani, Ashish, et al. “Attention is all you need.”
Advances in neural information processing systems 30
(2017).

[10] Ronneberger, Olaf, Philipp Fischer, and Thomas
Brox. ”U-net: Convolutional networks for biomedical
image segmentation.” International Conference on Medical
image computing and computer-assisted intervention.
Springer, Cham, 2015.

[11] He, Kaiming, et al. “Deep residual learning for
image recognition.” Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016.

[12] Long, Jonathan, Evan Shelhamer, and Trevor Darrell.
“Fully convolutional networks for semantic segmentation.”
Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.

http://cs230.stanford.edu/projects_fall_2020/reports/55773193.pdf
http://cs230.stanford.edu/projects_fall_2020/reports/55773193.pdf
https://arxiv.org/pdf/1910.12086.pdf
https://doi.org/10.1038/s41598-021-96446-w
https://doi.org/10.1038/s41598-021-96446-w
https://paperswithcode.com/datasets?task=music-transcription
https://paperswithcode.com/datasets?task=music-transcription

7. Appendix A: Transformer Failures

As detailed in section 2, we designed multiple
transformer-based models in hopes of utilizing its successes
in sequential modeling for NLP towards this task as well.
However, we immediately ran into several issues, mostly
centering around the highly dense nature of our input and
output which made transformers quite difficult.

7.1. Seq2Seq Failure

Our initial approach utilized the standard sequence 2 se-
quence implementation of a transformer as detailed in [9].
We utilized a transformer architecture with 2 encoder and 2
decoder blocks, alongside an internal feed-forward network
of dimension 200.

Once training, we quickly noted however that this model
was highly problematic. Our initial problem came due to
the quadratic nature of the self-attention mechanism which
made our space requirements a lot higher for this model and
forced us to reduce batch size massively. We compromised
on this by reducing our training inputs to 1-second intervals
instead of 10 to allow for more reasonable batch sizes.

Even so, this didn’t help our other major problem - the
model effectively came to learn that the most likely output
for any time step would be the previous time step, leading
it to give reasonable results in training as the mask only
hid the current stage and afterward while proving abysmal
during evaluation as it would nearly always output constant
notes for the entire span. We attempted to shift back the
input that was provided even further, but the model seemed
to always collapse to the same state of predicting constant
values as shown in Figure 10.

0 1000 2000 3000 4000 5000 6000 7000

Figure 10. Constant output prediction for transformer architecture

7.2. Iterative Generation Failures

As a secondary attempt, we realized that rewarding the
model during training for only predicting the next stage was
an extremely limiting task, as the obvious solution for it
would be to duplicate the previous input resulting in con-
stant note streams. Instead, we sought to iteratively update
only the next timestep’s prediction and force the model to
use it’s own predictions for subsequent predictions, making
it much more difficult to predict the same output each time.

This may have worked in theory, but we ran into sig-
nificant issues in implementing this in practice. To begin
with, this increased the computation time immensely, as we
would now have to run the model 768 times per input (or
7680 if we were using the full 10-second inputs), which
slowed down training significantly. Furthermore, this ex-
tremely large computation graph proved far too large to
keep track of on our hardware for gradient calculations,
forcing us to attempt to zero out the gradient every 16 time
steps or so. At this scale, however, we no longer were free
of our initial issue, as the model could once again learn that
it was optimal to predict the same thing for 16 time steps
(which evaluates to around 1/50th of a second), placing us
effectively back at our original issue as there often isn’t too
much change even over that span.

7.3. Blind Seq2Seq Failure

In hopes of circumventing this issue entirely, we at-
tempted to feed in fully blank inputs to the decoder, only
containing positional information. Yet even this model
seemed to collapse to the same state, for reasons we are
unsure of why. We suspect that this may just be due to the
dense nature of our inputs and the model being unable to
learn significant distinguishing features from the positional
encoding that we are feeding in. Potentially experimenting
with the design for the positional encoders may help, but
at this point, we decided that it would make more sense to
fully scrap the decoder component of the model as we were
anyways barely feeding in any meaningful information.

7.4. Encoder Only Failures

As a final attempt, we decided to simplify the architec-
ture to be encoder only, utilizing a linear layer on the out-
put, upsampling, and then utilizing a Conv1d layer as in our
FCNN to create our desired output shape. In this case, we
finally got a slightly different output - it predicted an addi-
tional note at one point in the middle that wasn’t there ear-
lier! Unfortunately, that was the only improvement it pro-
vided — for the most part, the output was constant and there
was effectively no visually discernible understanding of the
inputs. We are still unsure as to why this is the case, but it
seems like the model is simply unable to lower the loss be-
yond this constant input - perhaps longer training and more
experimentation with the loss function and optimizers may
be able to alleviate this issue, but we decided at this point
that it would be better to focus our time on the other two
models given their better results.

It is possible that we missed out on common solutions
to utilizing transformers for dense time series due to our
lack of experience with the model, but we surmise after ex-
ploring these potential fixes that finding a transformer-based
solution is non-trivial with our current background.

	. Introduction
	. Methodology
	. Data Collection and Processing
	. Fully Convolutional Neural Networks
	. Recurrent Convolutional Neural Networks
	. Transformers
	Seq2Seq Transformer Model
	Transformer Encoder

	. Experiments
	. Loss Function Design
	. Model Complexity Comparison
	. Further Training Time
	. Learning Visualization
	. Sample Audio Outputs

	. Discussion
	. Statement of individual contribution
	. References
	. Appendix A: Transformer Failures
	. Seq2Seq Failure
	. Iterative Generation Failures
	. Blind Seq2Seq Failure
	. Encoder Only Failures

